数学-纸上得来终觉浅
-
函数极限的定义($\epsilon,\delta$语言)
-
函数极限的性质
- 唯一性
- 局部有界性
- 局部保号性
-
无穷小(let $\alpha$ be infinitesimal)
- 性质
- $\sum\limits_{k}^{N}{\alpha_k}=\alpha,(N \text{ is finite})$
- $\alpha’\cdot f(x)=\alpha $,where $f(x)$ is limited at the interval
- $\prod\limits_{k}^{N}{\alpha_k}=\alpha,(N \text{ is finite})$
- 比阶($\lim\alpha(x)=0$,$\lim\beta(x)=0$,$\beta(x)\neq0$)
- $\alpha(x)$是$\beta(x)$的高阶无穷小$\Leftrightarrow\lim{\frac{\alpha(x)}{\beta(x)}}=0$
- $\alpha(x)$是$\beta(x)$的低阶无穷小$\Leftrightarrow\lim{\frac{\alpha(x)}{\beta(x)}}=\infty$
- $\alpha(x)$是$\beta(x)$的同阶无穷小$\Leftrightarrow\lim{\frac{\alpha(x)}{\beta(x)}}=c,(\text{constant }c\neq 0)$
- $\alpha(x)$是$\beta(x)$的等价无穷小$\Leftrightarrow\lim{\frac{\alpha(x)}{\beta(x)}}=1$
- $\alpha(x)$是$\beta(x)$的$k$阶无穷小$\Leftrightarrow\lim{\frac{\alpha(x)}{\beta^k(x)}}=0$
- 性质
-
极限的运算
- 四则运算
- 洛必达法则
- 泰勒展开
- 夹逼准则
- 七种未定式:$\frac{0}{0},\frac{\infty}{\infty},0\cdot\infty,\infty-\infty,\infty^0,0^0,1^{\infty}$
-
函数的连续和两类间断点
-
超实数(hyperreal number)
操作系统-three easy piece
- cpu-intro
- the Process
- Process API
- create
- Destory
- Wait
- Miscellaneous Control
- Status
- Process status
- Proc data structure:(PCB)
- cpu-api
fork()
wait()
exec()
spawn()
*
- cpu-mechanisms
- from Directed Execution to Limited Directed Execution:
- user mode and kernel mode
- system call
- switch between Processes,Os need to retain CPU from process
- A Cooperative Approach: Wait For System Calls
- A Non-Cooperative Approach: The OS Takes Control
- reboot (x
- timer interrupt
- Saving and Restoring Context
- from Directed Execution to Limited Directed Execution:
- cpu-sched(reading)
- cpu-sched-mlfq(reading)
数据结构-排好队一个一个FIFO
队列
- 顺序队列的性质和操作
- 循环队列的性质和操作
- 链式队列的性质和操作
- 双端队列
课程编号018-027